过去我们在讨论传统的电子商务模式时,往往总是围绕着某一个网站的商业模型、服务内容、现有规模而展开的。但事实告诉我们,以这种方法来分析电子商务的发展将是一种不切合实际也不合理的模式,而且,这种以网站为中心的发展理念存在着诸多的缺陷。
重复的内容
早期的某些电子商务商过多强调网站个体的内容丰富性,容易导致所提供的信息服务的低质量和重复性建设。
对于网站来说,投入了大量的精力和人力去搜集和整体资料却并没有为使用者带来更多的方便,过多杂乱、无效、低质、过时、重复的信息反而给访问者造成了时间上和精力上的损失,反而会引起访问者的不满和流失。虽然这种方式短期内会吸引各种客户的访问,但是很难建立起一批忠诚的目标客户,也很难挖掘和培育潜在客户,这样就会给网站的发展带来很大的困难。
例如某些网站虽然可以借着超链接的功能让访问者从一个网站跳跃至另一个网站而达到遨游网络世界的目的,但是其功能也仅限于此,访问者并无法将他们在某一个网站所获得的信息或资源随着超链接传递至另一个网站。因此,他们需要不断对不同的网站重复输入相同的信息以获得服务,网站与网站之间无法交换信息,也无法将不同网站的资源整合在一起来为使用者提供更丰富:更有效的服务,更可怕的是随着网上资源的不断飞速累积,不及时更新相关信息和数据,就会造成访问者在寻找有效信息的过程中浪费更多的时间和精力去排除这些“无效”、“失效”的信息垃圾。
被动的服务
被动的服务模式,难以实现智能型、个性化的服务。由于网站没有给自己定义明确的客户群,难以准确把握客户的心理和需求,从而导致了所提供服务的主观性倾向,致使访问者常常需要耗费大量的时间访问各种不同的网站以便获得一个完整或更佳的服务。例如:如果你想利用电子商务来安排一次旅游行程:定购机票并且预定酒店,为了在行程、机位、机票价格、酒店服务及酒店价格等方面取得最佳的组合,你必须要分别访问各个可能提供航班服务及酒店服务的网站。这种情况下,极有可能发生航班已确认但是酒店没有空房,或者酒店房间已确认但是没有航班的情形。因此你必须重复上网的动作直到找到符合你要求的组合。如果再加上陆上交通的安排,其复杂程度可想而知。
更多的客户希望能够从一个网站上就找到解决问题的所有服务,所以网站应该从这个角度来考虑如何细分市场和提供专业化的服务内容。事实上,很多电子商务网站正是由于针对目标客户群体提供了更加个性化和智能化的一站式服务,从而得到了忠实客户群体的认可和良性的业务循环。
当然,我们也应该看到这种“套餐”式的服务所存在的缺陷,由于网站所占有的资源非常的有限,所以在提供这种“套餐”服务时可能发生客户满意网站所提供的航班,但是不满意它所提供的酒店的情形。毕竟客户的需求都是个性化的,就像一个音响发烧友一般都会从不同的供应商那里去采购不同的零部件来组合成自己最满意的音响组合一样,所以在资源和弹性都有限的条件下,网站个体对于提供“套餐”服务还是提供“单一”服务很难取舍。

中图分类号:TP393 文献标识码:A 文章编号:1009-304414-0251-02

中图分类号:TP311.13 文献标志码:A 文章编号:1673-291X29-0153-02

[1][2]

1 概述

一、概念

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

数据挖掘,又译为资料勘探、数据采矿,是数据库知识发现中的一个步骤。数据挖掘是一种大规模的数据库,拥有以高效的计算能力进行数据获取和处理技术,也就是从随机的大量的原始数据信息中挖掘和攫取隐藏在其中的更深层次的、有用的、价值较高的信息,为企业的营销决策、经营管理、市场预测和发展规划等提供科学、有效的依据和支撑。当前,数据挖掘在逐渐成为一种新型的企业信息处理技术,被许多企业应用到实际经营中,通过对企业整体数据库、数据仓库或是其他数据库中模糊的、混乱的和不完全信息和数据进行抽取分析和模式化处理,获取更具价值的客户数据。

2 数据挖掘技术概述

以淘宝网为例,作为我国电子商务行业的领跑者,在其旗下有许多C2C的个体店铺及B2C旗舰店。淘宝网能够实现短时间的快速发展,与其独特的自身优势紧密相连。它依靠网络的宣传与营销策略,更多的还是通过数据挖掘获取有用的信息为顾客提供商品和服务。

数据挖掘,也称数据库中的知识发现。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

二、数据挖掘在电子商务平台的应用

3 Web 数据挖掘特点

电子商务以其初始投入成本较低、商品信息种类多、受众范围广、不受地区限制等明显特征在飞速发展,正在逐渐成为商业经营的新模式。每天在浏览各大电子商务平台APP页面和网站页面的用户不计其数,浏览次数也在逐渐增加,用户的浏览历史记录、用户的对商品的侧重关注点、用户的购物偏好以及用户的购买能力等都是电子商务平台管理者以及销售商着重关注的主要信息。电子商务不仅大幅度降低了平台的销售商的投入成本,为销售商做了广泛的宣传,也以其便捷舒适的购物体验逐渐改变了人们的购物习惯,还为众多中小销售商了带来了新的发展。

Web
数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

为了将数据挖掘技术应用在电子商务领域,根据使用者的应用目的不同选择不同的数据挖掘算法来满足使用者的需求,实现预期目标,有时会将多重挖掘算法结合起来,以实现更好的挖掘结果。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

如今在企业实际应用中最广泛采用的是数据挖掘中的日志挖掘。通过服务器记录的日志探索出访问电子商务平台的浏览者的需求,获得浏览者的购物偏好和浏览模式,从而向浏览者推荐其有兴趣的、可能购买的商品,并推出相应的优惠政策和促销手段,增加浏览者向购买者的转化率。网站的后台设计人员也可以根据数据挖掘得到的大量?稻菡?理得出的有效信息,对网站页面进行优化并完善网站页面设计,以便为浏览者提供的个性化的推荐,将浏览者可能感兴趣的内容放在显眼的位置,提高网页的访问率和浏览者的购买率。此外,数据挖掘不仅能够在数据库中发现庞杂的数据之间暗藏的信息,还能够帮助管理者合理地做出决策,找出经营模式中的一些缺陷和弊端,通过不断改善经营战略、优化管理制度,最终增强企业的竞争力。总之,数据挖掘是电子商务营销中一个重要的创新技术手段。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

挖掘潜在客户

澳门新葡8455最新网站,3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

对于电子商务而言,首要的任务就是吸引客户,而数据挖掘技术的一个明显作用就是通过对数据的分析挖掘出潜在客户。服务器日志能够完整记录用户的历史访问痕迹,通过数据挖掘技术,电子商务平台的管理者能够精确获取用户的偏好及潜在需求,从而根据用户的不同需求提供个性化的产品套餐服务,并实施个性化页面推荐服务。如今,不只是淘宝网,各个电子商务平台都开始在公交地铁宣传板、电梯广告等宣传自己的优惠活动等,吸引潜在客户浏览其电子商务网站,吸引客户关注,并最终实现销售目的。

4电子商务中Web挖掘中技术的应用分析

推测客户需求

1)电子商务中序列模式分析的应用

了解客户的实际需求以及潜在需求已成为电子商务的重点研究问题。通过数据挖掘,推测客户的兴趣偏好,进行个性化推荐,甚至可以准确判断出用户的潜在需求,提供个性化服务。结合用户的浏览兴趣、购买习惯和偏好,预测他们的潜在购买可能,对每一个客户定制专属的个性化服务套餐,甚至实现组合销售,以促使用户冲动消费。通过收集整理客户的注册信息,包括性别、职业、年龄、收货地址等信息,按照不同标准进行分类,并标记出各个分类中客户的共性特点,如消费能力、购买需求等,针对其特点采取相应的策略。比如,对于学生阶层会推荐物美价廉的服饰化妆品等,对于家庭女性推荐打折优惠的商品,以及通过一些套餐优惠组合销售等,在最大程度满足客户的购买需求,给电子商务平台带来利润。

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,
由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

留住现有客户

2)电子商务中关联规则的应用

电子商务平台可以根据客户的特征、职业、购买周期、购买能力对其进行聚类,在此基础上针对客户的实际情况为现有客户提供满足需求的推荐和服务,从而提高客户对购买商品以及电子商务平台服务的满意度和认可度,将现有客户变成忠诚客户。同时,还可以利用数据挖掘技术推测出客户可能流失的原因,并针对原因提出相对应的完善措施或修改企业的促销、营销策略。从客户对商品的浏览次数、类似商品的浏览记录和销售情况进行挖掘,获取客户的浏览规律,估计推算出客户对商品关注的侧重点以及消费周期,再结合市场、季节和消费趋势的变化,针对不同的产品推出相应的促销策略和折扣优惠等。淘宝网每天都会有一些限时抢购活动等,针对的就是购买量比较大的商品等。而对于一些现有客户不断流失,淘宝网会根据客户曾经的购买情况,在手机APP或电脑页面等发送推送通知;一些淘宝店铺还会根据客户购买时留的电话号码不定期发送优惠打折新信息等,来留住现有客户,减少甚至避免造成客户流失。
将现有客户聚类

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。
3)电子商务中路径分析技术的应用

客户聚类分析在电子商务中应用也较为广泛。它是指通过数据挖掘技术对所有历史数据的整合、归类、分析之后,寻找相似浏览记录和同类商品偏好的客户归纳为一类相似用户。聚类分析认为,相似浏览痕迹的这一类用户可能具有相同的兴趣和购物偏好,通过将这一类用户中的某些用户的历史浏览、购买数据推荐给其他的用户,帮助发现这一类用户的潜在的需求,从而尽可能精准预测出用户行为,具有前瞻性。比如,在淘宝的首页中会根据客户的最近浏览以及其购买偏好进行清单的整理,在购物车底部会有根据客户的最近浏览推荐类似产品、浏览本产品的客户也浏览过的栏目。

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

三、结论

4)电子商务中分类分析的应用

大数据应用在我国的发展水平处在落后状态,对于大数据方面的应用研究还处于初始阶段。数据展示、数据存储以及数据分析的效率和有效性等问题需要在今后进行更多的研究工作来解决。如今数据的价值逐渐得到重视,信息对于企业的重要性认识也日益提高,今后将是通过数据来推动技术的进步。

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

在经济和网络飞速发展的今天,在电子商务蓬勃发展的大环境下,电子商务平台购物人群正呈几何数上涨,线上交易也逐渐成为人们交易时选择的主要方式。电子商务平台交易过程中除了交易产生的信息外,买家评价的信息也越来越多受到电子商务平台以及销售商的关注,正渐渐成为网络数据的主要来源。数据挖掘分析的重要性日益凸显,各电子商务平台的管理者也逐渐重视对数据的挖掘和整理。在大数据时代下,数据的挖掘对于电子商务行业是极其必要的,同样在许多行业中也有重要意义。尽管目前的发展和应用还存在一定缺陷,但会在未来的迅速发展中不断发展完善。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。

分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5 结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用
web
挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

相关文章